

Welcome to python-cluster’s documentation!

Index

	Changelog

Introduction

Implementation of cluster algorithms in pure Python.

As this is exacuted in the Python runtime, the code runs slower than similar
implementations in compiled languages. You gain however to run this on pretty
much any Python object. The different clustering methods have different
prerequisites however which are mentioned in the different implementations.

Example for K-Means Clustering

from cluster import KMeansClustering
data = [
 (8, 2),
 (7, 3),
 (2, 6),
 (3, 5),
 (3, 6),
 (1, 5),
 (8, 1),
 (3, 4),
 (8, 3),
 (9, 2),
 (2, 5),
 (9, 3)
]
cl = KMeansClustering(data)
cl.getclusters(2)

The above code would give the following result:

[
 [(8, 2), (8, 1), (8, 3), (7, 3), (9, 2), (9, 3)],
 [(3, 5), (1, 5), (3, 4), (2, 6), (2, 5), (3, 6)]
]

Example for Hierarchical Clustering

from cluster import HierarchicalClustering
data = [791, 956, 676, 124, 564, 84, 24, 365, 594, 940, 398,
 971, 131, 365, 542, 336, 518, 835, 134, 391]
cl = HierarchicalClustering(data)
cl.getlevel(40)

The above code would give the following result:

[
 [24],
 [84, 124, 131, 134],
 [336, 365, 365, 391, 398],
 [676],
 [594, 518, 542, 564],
 [940, 956, 971],
 [791],
 [835],
]

Using getlevel()
returns clusters where the distance between each cluster is no less than
level.

Note

Due to a bug [https://github.com/exhuma/python-cluster/issues/11] in earlier releases, the elements of the input data must be
sortable!

API

	cluster

	cluster.matrix

	cluster.method.base

	cluster.method.hierarchical

	cluster.method.kmeans

	cluster.util

Indices and tables

	Index

	Module Index

	Search Page

Changelog

Release 1.4.1.post2

This is a “house-keeping” commit. No new features or fixes are introduced.

	Update changelog.

	Removed the Pipfile which was introduced in 1.4.1.post1. The file
caused false positives on security checks. Additionally, having a Pipfile
is mainly useful in applications, and not in libraries like this one.

Release 1.4.1.post1

This is a “house-keeping” commit. No new features or fixes are introduced.

	Update changelog.

	Switch doc-building to use pipenv & update Pipfile accordingly.

Release 1.4.1

	Fix clustering of dictionaries. See GitHub issue #28 (Tim Littlefair).

Release 1.4.0

	Added a “display” method to hierarchical clusters (by 1kastner).

Release 1.3.2 & 1.3.3

	Fix regression introduced in 1.3.1 related to package version metadata.

Release 1.3.1

	Don’t break if the cluster is initiated with iterable elements (GitHub Issue
#20).

	Fix package version metadata in setup.py

Release 1.3.0

	Performance improvments for hierarchical clustering (at the cost of memory)

	Cluster instances are now iterable. It will iterate over each element,
resulting in a flat list of items.

	New option to specify a progress callback to hierarchical clustring. This
method will be called on each iteration for hierarchical clusters. It gets
two numeric values as argument: The total count of elements, and the number
of processed elements. It gives users a way to present to progress on screen.

	The library now also has a __version__ member.

Release 1.2.2

	Package metadata fixed.

Release 1.2.1

	Fixed an issue in multiprocessing code.

Release 1.2.0

	Multiprocessing (by loisaidasam)

	Python 3 support

	Split up one big file into smaller more logical sub-modules

	Fixed https://github.com/exhuma/python-cluster/issues/11

	Documentation update.

	Migrated to GitHub

Release 1.1.1b3

	Fixed bug #1727558

	Some more unit-tests

	ValueError changed to ClusteringError where appropriate

Release 1.1.1b2

	Fixed bug #1604859 (thanks to Willi Richert for reporting it)

Release 1.1.1b1

	Applied SVN patch [1535137] (thanks ajaksu)

	Topology output supported

	data and raw_data are now properties.

Release 1.1.0b1

	KMeans Clustering implemented for simple numeric tuples.

Data in the form [(1,1), (2,1), (5,3), ...] can be clustered.

Usage:

>>> from cluster import KMeansClustering
>>> cl = KMeansClustering([(1,1), (2,1), (5,3), ...])
>>> clusters = cl.getclusters(2)

The method getclusters takes the amount of clusters you would like to
have as parameter.

Only numeric values are supported in the tuples. The reason for this is
that the “centroid” method which I use, essentially returns a tuple of
floats. So you will lose any other kind of metadata. Once I figure out a
way how to recode that method, other types should be possible.

Release 1.0.1b2

	Optimized calculation of the hierarchical clustering by using the fact, that
the generated matrix is symmetrical.

Release 1.0.1b1

	Implemented complete-, average-, and uclus-linkage methods. You can select
one by specifying it in the constructor, for example:

cl = HierarchicalClustering(data, distfunc, linkage='uclus')

or by setting it before starting the clustering process:

cl = HierarchicalClustering(data, distfunc)
cl.setLinkageMethod('uclus')
cl.cluster()

	Clustering is not executed on object creation, but on the first call of
getlevel. You can force the creation of the clusters by calling the
cluster method as shown above.

cluster

	
class cluster.cluster.Cluster(level, *args)

	Bases: object

A collection of items. This is internally used to detect clustered items
in the data so we could distinguish other collection types (lists, dicts,
…) from the actual clusters. This means that you could also create
clusters of lists with this class.

	
display(depth=0)

	Pretty-prints this cluster. Useful for debuging.

	
getlevel(threshold)

	Retrieve all clusters up to a specific level threshold. This
level-threshold represents the maximum distance between two clusters.
So the lower you set this threshold, the more clusters you will
receive and the higher you set it, you will receive less but bigger
clusters.

	Parameters

	threshold – The level threshold:

Note

It is debatable whether the value passed into this method should
really be as strongly linked to the real cluster-levels as it is
right now. The end-user will not know the range of this value
unless s/he first inspects the top-level cluster. So instead you
might argue that a value ranging from 0 to 1 might be a more
useful approach.

	
topology()

	Returns the structure (topology) of the cluster as tuples.

Output from cl.data:

[<Cluster@0.833333333333(['CVS',
 <Cluster@0.818181818182(['34.xls',
 <Cluster@0.789473684211([<Cluster@0.555555555556(['0.txt',
 <Cluster@0.181818181818(['ChangeLog', 'ChangeLog.txt'])>])>,
 <Cluster@0.684210526316(['20060730.py',
 <Cluster@0.684210526316(['.cvsignore',
 <Cluster@0.647058823529(['About.py', <Cluster@0.625(['.idlerc',
 '.pylint.d'])>])>])>])>])>])>])>]

Corresponding output from cl.topo():

('CVS', ('34.xls', (('0.txt', ('ChangeLog', 'ChangeLog.txt')),
('20060730.py', ('.cvsignore', ('About.py',
('.idlerc', '.pylint.d')))))))

cluster.matrix

	
class cluster.matrix.Matrix(data, combinfunc, symmetric=False, diagonal=None)

	Bases: object

Object representation of the item-item matrix.

	
genmatrix(num_processes=1)

	Actually generate the matrix

	Parameters

	num_processes – If you want to use multiprocessing to split up the
work and run combinfunc() in parallel, specify
num_processes > 1 and this number of workers will be spun up,
the work is split up amongst them evenly.

	
worker()

	Multiprocessing task function run by worker processes

cluster.method.base

	
class cluster.method.base.BaseClusterMethod(input, distance_function, progress_callback=None)

	Bases: object

The base class of all clustering methods.

	Parameters

	input – a list of objects

	Distance_function

	a function returning the distance - or opposite of
similarity (distance = -similarity) - of two items from the input.
In other words, the closer the two items are related, the smaller this
value needs to be. With 0 meaning they are exactly the same.

Note

The distance function should always return the absolute distance between
two given items of the list. Say:

distance(input[1], input[4]) = distance(input[4], input[1])

This is very important for the clustering algorithm to work! Naturally,
the data returned by the distance function MUST be a comparable
datatype, so you can perform arithmetic comparisons on them (< or
>)! The simplest examples would be floats or ints. But as long as
they are comparable, it’s ok.

	
data

	Returns the data that is currently in process.

	
raw_data

	Returns the raw data (data without being clustered).

	
topo()

	Returns the structure (topology) of the cluster.

See topology() for more information.

cluster.method.hierarchical

	
class cluster.method.hierarchical.HierarchicalClustering(data, distance_function, linkage=None, num_processes=1, progress_callback=None)

	Bases: cluster.method.base.BaseClusterMethod

Implementation of the hierarchical clustering method as explained in a
tutorial [http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/hierarchical.html] by matteucc.

Object prerequisites:

	Items must be sortable (See issue #11 [https://github.com/exhuma/python-cluster/issues/11])

	Items must be hashable.

Example:

>>> from cluster import HierarchicalClustering
>>> # or: from cluster import *
>>> cl = HierarchicalClustering([123,334,345,242,234,1,3],
 lambda x,y: float(abs(x-y)))
>>> cl.getlevel(90)
[[345, 334], [234, 242], [123], [3, 1]]

Note that all of the returned clusters are more than 90 (getlevel(90))
apart.

See BaseClusterMethod for more details.

	Parameters

	
	data – The collection of items to be clustered.

	distance_function – A function which takes two elements of data
and returns a distance between both elements (note that the distance
should not be returned as negative value!)

	linkage – The method used to determine the distance between two
clusters. See set_linkage_method() for
possible values.

	num_processes – If you want to use multiprocessing to split up the
work and run genmatrix() in parallel, specify num_processes > 1 and
this number of workers will be spun up, the work split up amongst them
evenly.

	progress_callback – A function to be called on each iteration to
publish the progress. The function is called with two integer arguments
which represent the total number of elements in the cluster, and the
remaining elements to be clustered.

	
cluster(matrix=None, level=None, sequence=None)

	Perform hierarchical clustering.

	Parameters

	
	matrix – The 2D list that is currently under processing. The
matrix contains the distances of each item with each other

	level – The current level of clustering

	sequence – The sequence number of the clustering

	
display()

	Prints a simple dendogram-like representation of the full cluster
to the console.

	
getlevel(threshold)

	Returns all clusters with a maximum distance of threshold in between
each other

	Parameters

	threshold – the maximum distance between clusters.

See getlevel()

	
publish_progress(total, current)

	If a progress function was supplied, this will call that function with
the total number of elements, and the remaining number of elements.

	Parameters

	
	total – The total number of elements.

	remaining – The remaining number of elements.

	
set_linkage_method(method)

	Sets the method to determine the distance between two clusters.

	Parameters

	method – The method to use. It can be one of 'single',
'complete', 'average' or 'uclus', or a callable. The
callable should take two collections as parameters and return a
distance value between both collections.

cluster.method.kmeans

	
class cluster.method.kmeans.KMeansClustering(data, distance=None, equality=None)

	Bases: object

Implementation of the kmeans clustering method as explained in a tutorial [http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/kmeans.html]
by matteucc.

Example:

>>> from cluster import KMeansClustering
>>> cl = KMeansClustering([(1,1), (2,1), (5,3), ...])
>>> clusters = cl.getclusters(2)

	Parameters

	
	data – A list of tuples or integers.

	distance – A function determining the distance between two items.
Default (if None is passed): It assumes the tuples contain numeric
values and appiles a generalised form of the euclidian-distance
algorithm on them.

	equality – A function to test equality of items. By default the
standard python equality operator (==) is applied.

	Raises

	ValueError – if the list contains heterogeneous items or if the
distance between items cannot be determined.

	
assign_item(item, origin)

	Assigns an item from a given cluster to the closest located cluster.

	Parameters

	
	item – the item to be moved.

	origin – the originating cluster.

	
getclusters(count)

	Generates count clusters.

	Parameters

	count – The amount of clusters that should be generated. count
must be greater than 1.

	Raises

	ClusteringError – if count is out of bounds.

	
initialise_clusters(input_, clustercount)

	Initialises the clusters by distributing the items from the data.
evenly across n clusters

	Parameters

	
	input – the data set (a list of tuples).

	clustercount – the amount of clusters (n).

	
move_item(item, origin, destination)

	Moves an item from one cluster to anoter cluster.

	Parameters

	
	item – the item to be moved.

	origin – the originating cluster.

	destination – the target cluster.

cluster.util

	
exception cluster.util.ClusteringError

	Bases: exceptions.Exception

	
cluster.util.centroid(data, method=<function median>)

	returns the central vector of a list of vectors

	
cluster.util.dotproduct(a, b)

	Calculates the dotproduct between two vecors

	
cluster.util.flatten(L)

	Flattens a list.

Example:

>>> flatten([a,b,[c,d,[e,f]]])
[a,b,c,d,e,f]

	
cluster.util.fullyflatten(container)

	Completely flattens out a cluster and returns a one-dimensional set
containing the cluster’s items. This is useful in cases where some items of
the cluster are clusters in their own right and you only want the items.

	Parameters

	container – the container to flatten.

	
cluster.util.magnitude(a)

	calculates the magnitude of a vecor

	
cluster.util.mean(numbers)

	Returns the arithmetic mean of a numeric list.
see: http://mail.python.org/pipermail/python-list/2004-December/294990.html

	
cluster.util.median(numbers)

	Return the median of the list of numbers.
see: http://mail.python.org/pipermail/python-list/2004-December/294990.html

	
cluster.util.minkowski_distance(x, y, p=2)

	Calculates the minkowski distance between two points.

	Parameters

	
	x – the first point

	y – the second point

	p – the order of the minkowski algorithm. If p=1 it is equal
to the manhatten distance, if p=2 it is equal to the euclidian
distance. The higher the order, the closer it converges to the
Chebyshev distance, which has p=infinity.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cluster	

 	
 	
 cluster.cluster	

 	
 	
 cluster.matrix	

 	
 	
 cluster.method.base	

 	
 	
 cluster.method.hierarchical	

 	
 	
 cluster.method.kmeans	

 	
 	
 cluster.util	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | K
 | M
 | P
 | R
 | S
 | T
 | W

A

 	
 	assign_item() (cluster.method.kmeans.KMeansClustering method)

B

 	
 	BaseClusterMethod (class in cluster.method.base)

C

 	
 	centroid() (in module cluster.util)

 	Cluster (class in cluster.cluster)

 	cluster() (cluster.method.hierarchical.HierarchicalClustering method)

 	cluster.cluster (module)

 	cluster.matrix (module)

 	
 	cluster.method.base (module)

 	cluster.method.hierarchical (module)

 	cluster.method.kmeans (module)

 	cluster.util (module)

 	ClusteringError

D

 	
 	data (cluster.method.base.BaseClusterMethod attribute)

 	display() (cluster.cluster.Cluster method)

 	(cluster.method.hierarchical.HierarchicalClustering method)

 	
 	dotproduct() (in module cluster.util)

F

 	
 	flatten() (in module cluster.util)

 	
 	fullyflatten() (in module cluster.util)

G

 	
 	genmatrix() (cluster.matrix.Matrix method)

 	getclusters() (cluster.method.kmeans.KMeansClustering method)

 	
 	getlevel() (cluster.cluster.Cluster method)

 	(cluster.method.hierarchical.HierarchicalClustering method)

H

 	
 	HierarchicalClustering (class in cluster.method.hierarchical)

I

 	
 	initialise_clusters() (cluster.method.kmeans.KMeansClustering method)

K

 	
 	KMeansClustering (class in cluster.method.kmeans)

M

 	
 	magnitude() (in module cluster.util)

 	Matrix (class in cluster.matrix)

 	mean() (in module cluster.util)

 	
 	median() (in module cluster.util)

 	minkowski_distance() (in module cluster.util)

 	move_item() (cluster.method.kmeans.KMeansClustering method)

P

 	
 	publish_progress() (cluster.method.hierarchical.HierarchicalClustering method)

R

 	
 	raw_data (cluster.method.base.BaseClusterMethod attribute)

S

 	
 	set_linkage_method() (cluster.method.hierarchical.HierarchicalClustering method)

T

 	
 	topo() (cluster.method.base.BaseClusterMethod method)

 	
 	topology() (cluster.cluster.Cluster method)

W

 	
 	worker() (cluster.matrix.Matrix method)

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to python-cluster’s documentation!

 		
 Changelog

 		
 Release 1.4.1.post2

 		
 Release 1.4.1.post1

 		
 Release 1.4.1

 		
 Release 1.4.0

 		
 Release 1.3.2 & 1.3.3

 		
 Release 1.3.1

 		
 Release 1.3.0

 		
 Release 1.2.2

 		
 Release 1.2.1

 		
 Release 1.2.0

 		
 Release 1.1.1b3

 		
 Release 1.1.1b2

 		
 Release 1.1.1b1

 		
 Release 1.1.0b1

 		
 Release 1.0.1b2

 		
 Release 1.0.1b1

 		
 cluster

 		
 cluster.matrix

 		
 cluster.method.base

 		
 cluster.method.hierarchical

 		
 cluster.method.kmeans

 		
 cluster.util

_static/ajax-loader.gif

